

Fig. 1. The molecular structure of $\mathrm{RhH}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)$. All hydrogen atcms except the hydride are omitted for clarity. A atoms except the phenyl carbon atoms are depicted as 50% probability ellipsoids.

Dr Timm Paxson for supplying the crystals used in this investigation.

References

Barer, R. W. \& Pauling, P. (1969). J. Chem. Soc. Dalton, pp. 1495-1496.

Callahan, K. P., Lo, F. Y., Strouse, C. E., Sims, A. L. \& Hawthorne, M. F. (1974). Inorg. Chem. 13, 2842-2847.
la Placa, S. J. \& Ibers, J. A. (1963). J. Amer. Chem. Soc. 85, 3501-3502.
Paxson, T. E. \& Hawthorne, M. F. (1974). J. Amer. Chem. Soc. 96, 4674-4676.

Acta Cryst. (1976). B32, 266

An Efficient Laser Material, Lithium Neodymium Phosphate LiNdP $\mathbf{4 O}_{\mathbf{1 2}}$

By H. Koizumi
Musashino Electrical Communication Laboratory, Nippon Telegraph and Telephone Public Corporation, Musashino-shi, Tokyo 180, Japan

(Received 19 July 1975; accepted 30 August 1975)

Abstract. Monoclinic, $I 2 / c\left(C_{2 h}^{6}\right), a=9 \cdot 844$ (2), $b=$ 7.008 (3), $c=13.25$ (2) $\AA, \beta=90 \cdot 1$ (2) ${ }^{\circ}, Z=4, D_{c}=3 \cdot 39$, $D_{o}=3.38 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo} K \alpha)=62.0 \mathrm{~cm}^{-1}$. Structural framework is helical chains of $\left(\mathrm{PO}_{3}\right)_{\infty}$ along the b axis. Both Nd^{3+} and Li^{+}ions alternate on twofold axes in the middle of four such chains. NdO_{8} dodecahedra and considerably distorted LiO_{4} tetrahedra form linear chains sharing their edges. The refinement converged to $R=0.035$ for 1095 independent observed reflexions.

Introduction. Recently a phosphate laser material with high Nd concentration, $\mathrm{LiNdP}_{4} \mathrm{O}_{12}$, was produced in our laboratory and is reported to have a high laser performance (Yamada, Otsuka \& Nakano, 1974), comparable to or better than that of $\mathrm{NdP}_{5} \mathrm{O}_{14}$.

Specimens were selected from the crystals grown from the melt of $\mathrm{Li}_{2} \mathrm{O}-\mathrm{Nd}_{2} \mathrm{O}_{3}-\mathrm{P}_{2} \mathrm{O}_{5}$ by the Kyropolous technique (Yamada et al., 1974). Precession and Weissenberg photographs exhibited $2 / m$ Laue symme-
try with the following systematic absences: $h k l$ when $h+k+l=2 n+1,0 k l$ when $k+l=2 n+1, h 0 l$ when $h=2 n+1, l=2 n+1, h k 0$ when $h+k=2 n+1$.*

A prismatic crystal of dimensions $0.23 \times 0.35 \times 0.63$ mm was mounted so that its b axis was along the φ axis of the Rigaku Denki automatic four-circle X-ray diffractometer. Reflexions within $(\sin \theta / \lambda)=0.60 \AA^{-1}$ were measured using $\omega-2 \theta$ scan technique with a Ge monochromator. The intensities were corrected for Lorentzpolarization, absorption and extinction effects.

The locations of the heavier atoms, Nd^{3+} and P , were determined by the three-dimensional Patterson method. Structure factors based on the Patterson coordinates gave the conventional R value of $0 \cdot 231$. Successive Fourier synthesis clearly revealed the O atoms' positions indicating tetrahedral coordination around

[^0]each P atom. Then atomic positional and thermal parameters were refined by a full-matrix least-squares method (Busing, Martin \& Levy, 1962) to give $R=$ 0.067 . The location of the Li^{+}ion was selected from among several possible sites on the basis of symmetry and bonding considerations. All parameters including those for the Li^{+}ion were refined by two further cycles of least-squares methods and a final R value of 0.035 was obtained.
The final atomic positional and thermal parameters are listed in Table 1.*

Discussion. Bond distances and angles calculated from the final parameters are given in Table 2. Views of the structure projected along each axis are shown in Figs. 1,2 and 3.

* A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31343 (7 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Table 1. Positional and thermal parameters obtained in the final least-squares refinement Estimated standard deviations are given in parentheses. Anisotropic thermal factors ($\times 10^{5}$) are given by the expression: $T=\exp \left[-\left(h^{2} \beta_{11}+k^{2} \beta_{22}+l^{2} \beta_{33}+2 h k \beta_{12}+2 k l \beta_{23}+2 h l \beta_{13}\right)\right]$.

	x	y	z	β_{11} or $B\left(\AA^{2}\right)$	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Nd	${ }^{\frac{1}{2}}$	$0 \cdot 5501$ (1)	$\frac{1}{4}$	231 (6)	471 (12)	86 (3)	0	8 (3)	0
$\mathrm{P}(1)$	$0 \cdot 2247$ (2)	$0 \cdot 3070$ (2)	$0 \cdot 3889$ (1)	261 (14)	614 (30)	91 (8)	8 (15)	20 (8)	15 (11)
P (2)	$0 \cdot 3021$ (2)	$0 \cdot 9081$ (3)	$0 \cdot 3990$ (1)	287 (15)	594 (28)	91 (8)	-6 (16)	7 (8)	3 (12)
$\mathrm{O}(1)$	$0 \cdot 1193$ (5)	$0 \cdot 2551$ (6)	$0 \cdot 3153$ (3)	328 (39)	630 (79)	105 (20)	121 (41)	31 (22)	26 (33)
O(2)	$0 \cdot 3155$ (5)	$0 \cdot 4689$ (6)	$0 \cdot 3651$ (4)	448 (50)	548 (92)	188 (27)	- 172 (46)	49 (30)	42 (34)
O(3)	$0 \cdot 1554$ (4)	$0 \cdot 8642$ (6)	$0 \cdot 3806$ (3)	334 (41)	627 (86)	171 (23)	26 (47)	-91 (25)	20 (35)
$\mathrm{O}(4)$	$0 \cdot 4072$ (4)	$0 \cdot 8490$ (6)	$0 \cdot 3238$ (3)	370 (42)	634 (84)	176 (23)	17 (44)	104 (25)	15 (36)
O(5)	$0 \cdot 1488$ (4)	$0 \cdot 3364$ (7)	$0 \cdot 4937$ (3)	333 (40)	985 (90)	64 (20)	23 (48)	-15 (23)	-36 (35)
O(6)	$0 \cdot 3231$ (4)	0.1321 (6)	$0 \cdot 4095$ (3)	329 (4)	163 (5)	208 (3)	85 (41)	1 (80)	-3 (23)
Li	$\frac{1}{2}$	0.0536 (18)		[0.98 (9)]					

Table 2. Bond distances and angles in $\mathrm{LiNdP}_{4} \mathrm{O}_{12}$ with standard deviations in parentheses
Dodecahedron around Nd

Dodecahedron around	Nd-O(1)	2×2.571 (4) \AA A	$\mathrm{O}(1)-\mathrm{O}(1)^{\prime}$	2.854 (7) \AA A	
	$\mathrm{Nd}-\mathrm{O}(2)$	2×2.421 (5)	$\mathrm{O}(1)-\mathrm{O}(2)$	2.934 (6)	
	Nd-O(3)	2×2.404 (4)	$\mathrm{O}(1)-\mathrm{O}(3)$	2.904 (6)	
	Nd-O(4)	2×2.480 (4)	$\mathrm{O}(2)-\mathrm{O}(4)$	$2 \cdot 863$ (6)	
	$\mathrm{Nd}-\mathrm{Nd}$	6.474 (1)	$\mathrm{O}(3)-\mathrm{O}(4)$	2.971 (6)	
		$5 \cdot 644$ (1)	$\mathrm{O}(3)-\mathrm{O}(4)$	$3 \cdot 162$ (6)	
		$6 \cdot 662$ (1)	$\mathrm{O}(4)-\mathrm{O}(4)^{\prime}$	$2 \cdot 655$ (6)	
Tetrahedron around $\mathbf{P}(1)$					
$\mathrm{P}(1)-\mathrm{O}(1)$	1.519 (5) \AA	$\mathrm{O}(1)-\mathrm{O}(2)$	2.581 (7) \AA	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(2)$	119.1 (3) ${ }^{\circ}$
$\mathrm{P}(1)-\mathrm{O}(2)$	$1 \cdot 475$ (5)	$\mathrm{O}(1)-\mathrm{O}(5)$	$2 \cdot 461$ (6)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(5)$	$105 \cdot 1$ (3)
$\mathrm{P}(1)-\mathrm{O}(5)$	1.580 (4)	$\mathrm{O}(1)-\mathrm{O}(6)$	2.574 (6)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(6)$	111.8 (2)
$\mathrm{P}(1)-\mathrm{O}(6)$	1.589 (4)	$\mathrm{O}(2)-\mathrm{O}(5)$	2.574 (6)	$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{O}(5)$	$111 \cdot 3$ (3)
		$\mathrm{O}(2)-\mathrm{O}(6)$	2.434 (6)	$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{O}(6)$	$105 \cdot 1$ (3)
		$\mathrm{O}(5)-\mathrm{O}(6)$	$2 \cdot 485$ (6)	$\mathrm{O}(5)-\mathrm{P}(1)-\mathrm{O}(6)$	$103 \cdot 3$ (2)
Tetrahedron around $\mathrm{P}(2)$ l					
$\mathrm{P}(2)-\mathrm{O}(3)$	1.500 (4) \AA	$\mathrm{O}(3)-\mathrm{O}(4)$	2.581 (6) \AA	$\mathrm{O}(3)-\mathrm{P}(2)-\mathrm{O}(4)$	119.6 (2) ${ }^{\circ}$
$\mathrm{P}(2)-\mathrm{O}(4)$	$1 \cdot 484$ (4)	$\mathrm{O}(3)-\mathrm{O}(5)$	2.575 (6)	$\mathrm{O}(3)-\mathrm{P}(2)-\mathrm{O}(5)$	$112 \cdot 6$ (2)
$\mathrm{P}(2)-\mathrm{O}(5)$	1.590 (4)	$\mathrm{O}(3)-\mathrm{O}(6)$	2.533 (6)	$\mathrm{O}(3)-\mathrm{P}(2)-\mathrm{O}(6)$	$110 \cdot 1$ (3)
$\mathrm{P}(2)-\mathrm{O}(6)$	1.590 (5)	$\mathrm{O}(4)-\mathrm{O}(5)$	2.473 (6)	$\mathrm{O}(4)-\mathrm{P}(2)-\mathrm{O}(5)$	$107 \cdot 2$ (3)
		$\mathrm{O}(4)-\mathrm{O}(6)$	$2 \cdot 425$ (6)	$\mathrm{O}(4)-\mathrm{P}(2)-\mathrm{O}(6)$	$104 \cdot 1$ (3)
		$\mathrm{O}(5)-\mathrm{O}(6)$	$2 \cdot 455$ (6)	$\mathrm{O}(5)-\mathrm{P}(2)-\mathrm{O}(6)$	101•1 (2)
Tetrahedron around Li					
$\mathrm{Li}-\mathrm{O}(1)$	2×1.958 (12) \AA	$\mathrm{O}(1)-\mathrm{O}(4)$	2×3.441 (6) \AA	$\mathrm{O}(1)-\mathrm{Li}-\mathrm{O}(4)$	$2 \times 123.2(2)^{\circ}$
$\mathrm{Li}-\mathrm{O}(4)$	2×1.954 (9)	$\mathrm{O}(1)-\mathrm{O}(4)^{\prime}$	2×3.339 (6)	$\mathrm{O}(1)-\mathrm{Li}-\mathrm{O}(4)^{\prime}$	2×93.6 (6)
		$\mathrm{O}(1)-\mathrm{O}(1)^{\prime}$	2.854 (6)	$\mathrm{O}(1)-\mathrm{Li}-\mathrm{O}(1)^{\prime}$	117.2 (2)
		$\mathrm{O}(4)-\mathrm{O}(4)^{\prime}$	$2 \cdot 655$ (6)	$\mathrm{O}(4)-\mathrm{Li}-\mathrm{O}(4)^{\prime}$	85.6 (5)

Fig. 1. [010] projection of the $\mathrm{LiNd}_{4} \mathrm{O}_{12}$ structure.

Fig. 2. [100] projection of the $\mathrm{LiNdP}_{4} \mathrm{O}_{12}$ structure.

Fig. 3. Schematic view of the $-\mathrm{NdO}_{8}-\mathrm{LiO}_{4}$ - chain in the [001] direction.

Each NdO_{8} dodecahedron on the twofold axes also has an approximate $\overline{4}$ symmetry along the b axis. Such a configuration can be seen also in the crystal structure of $\mathrm{NdNa}_{5}\left(\mathrm{WO}_{4}\right)_{4}$ (Hong \& Dwight, 1974). The polyhedra share all their oxygen atoms with the corners and edges of neighbouring PO_{4} and LiO_{4} tetrahedra respectively. It is to be noted that the adjacent NdO_{8} polyhedra do not share any oxygen atoms among them. The shortest $\mathrm{Nd}-\mathrm{Nd}$ distance $5.644 \AA$ is an intermediate value of those in $\mathrm{NdNa}_{5}\left(\mathrm{WO}_{4}\right)_{4}(6.450 \AA)$ and $\mathrm{NdP}_{5} \mathrm{O}_{14}(5 \cdot 194 \AA)$ (Albrand, Attig, Fenner, Jeser \& Mootz, 1974).
LiO_{4} tetrahedra have a considerably distorted shape with a somewhat shorter average $\mathrm{Li}-\mathrm{O}$ distance ($1.956 \AA$) than that quoted in the literature ($1.98 \AA$), International Tables for X-ray Crystallography (1962).

The helical arrangement of the corner-shared PO_{4} tetrahedra chains can be clearly shown on [100] and [001] projection (Figs. 2 and 3). In comparison, helical chains in the $\mathrm{NdP}_{3} \mathrm{O}_{9}$ structure involve two more PO_{4} groups in each chain unit and in the structure of $\mathrm{NdP}_{5} \mathrm{O}_{14}$ there is cross-linking of $\left(\mathrm{PO}_{3}\right)_{\infty}$ ribbons (Hong, 1974).

The helical $\left(\mathrm{PO}_{3}\right)_{\infty}$ chains in the structure and significant difference in $\mathrm{Nd}-\mathrm{Nd}$ separation along each axis ($5.644,7.008,6.621 \AA$) may be closely related to the observed strong anisotropy in laser characteristics (Otsuka, Yamada, Saruwatari \& Kimura, 1975).

The author is deeply indebted to Mr Yamada, who supplied the crystals and Mr Hori of Rigaku Denki Co. for the measurements on the four-circle X-ray diffractometer and also wishes to express his gratitude to Dr N. Niizeki and Dr H. Iwasaki for their helpful discussions and encouragement.

References

Albrand, K. R., Attig, R., Fenner, J., Jeser, J. P. \& Mootz, D. (1974). Mater. Res. Bull. 9, 129-140.
Busing, W. R., Martin, O. K. \& Levy, H. A. (1962). ORFLS: a Fortran Crystallographic Least-Squares Program. Oak Ridge National Laboratory Report ORNL-TM-305.
Hong, H. Y-P. (1974). Acta Cryst. B30, 468-474.
Hong, H. Y-P. \& Dwight, K. (1974). Mater. Res. Bull. 9, 775-780.
International Tables for X-ray Crystallography (1962). Vol. III, p. 258. Birmingham: Kynoch Press.
Otsuka, K., Yamada, T., Saruwatari, M. \& Kimura, T. (1975). IEEE J. Quantum Electron. QE-11 (7), 330-335.

Yamada, T., Otsuka, K. \& Nakano, J. (1974). J. Appl. Phys. 45, 5096-5097.

[^0]: * The symmetry of the crystal was erroneously reported as orthorhombic (Yamada et al., 1974). The relations between pseudo-orthorhombic axes and monoclinic axes are as follows. $a_{\text {pseudo orth. }}\left\|[100]_{\text {monocl. }} ; b_{\text {pseudo orth. }}\right\| c_{\text {monoct. }}$; $c_{\text {pseudo orth. }} \| b_{\text {monocli. }}$.

